

Workbook

Physics 2 Electricity and Magnetism

Table of Contents

Electric Dipole	2
'	
Electric Dipole	2

Electric Dipole

Electric Dipole

Questions

- 1) Two charges q and -q are placed at x=a and at x=-a.
- a. Calculate the force acting on a third charge Q placed at (x, y, 0).
- b. Assume that the distance between Q and the origin is much larger than the distance between the other two charges.
 The angle between Q and the x-axis is 45° (see diagram).
 Use your answer to 1 to calculate the force on Q.
- c. Calculate the dipole moment of charges q and -q.
- d. Again calculate the force on Q,this time using the equation for a dipole field.How does your answer compare to that of question 2?

- **2)** We are given a dipole of moment $\vec{p} = (p, 0, 0)$, located at the origin.
- a. Calculate the magnitude p such that if an electron was located at (a, 0, 0) with a velocity of (v, 0, 0), it would eventually come to a stop at (b, 0, 0).
- b. Calculate the magnitude p such that if an electron was located at $(a, -\sqrt{2}a, 0)$ with a velocity of (0,0,v), it would have circular motion.
- 3) Calculate the total dipole moment of the system.

- 4) A charge q is located at (0,0,d) and -q is located at (0,0,-d).
- a. Calculate the exact potential at a point along the z-axis.
- b. What is the minimal value of z such that the approximation of the potential at that point wont deviate more than 1% from the actual value.
- c. What is the minimal value of z such that the approximation of the electric field at that point wont deviate more than 1% from the actual value.

- 5) An electric dipole of dipole moment \vec{p} is placed at \vec{r} . A point charge q is at the origin.
- a. What is the torque acting on the dipole?
- b. What is the energy of the dipole?
- c. Show that the force acting on the dipole is equal to $\vec{F} = \frac{k(\vec{p} \cdot r^2 3(\vec{p} \cdot \vec{r}) \cdot \vec{r})}{r^5}$

- **6)** Dipole \vec{p}_1 is located at \vec{r}_1 , and dipole \vec{p}_2 is located at \vec{r}_2 .
- a. Show that the energy of \vec{p}_2 in the field of \vec{p}_1 is:
- b. $U = \frac{k}{\tilde{r}^3} \left[\vec{p}_1 \cdot \vec{p}_2 3(\vec{p}_1 \cdot \tilde{r})(\vec{p}_2 \cdot \tilde{r}) \right]$, where $\tilde{\vec{r}} = \vec{r}_2 \vec{r}_1$, $\tilde{\hat{r}} = \frac{\tilde{r}}{\tilde{r}}$, $\tilde{r} = |\tilde{\vec{r}}|$.
- c. This is the energy of a dipole-dipole system. Show that if we were to calculate the energy of \vec{p}_1 in the field of \vec{p}_2 , we would get the same answer.
- d. What is the force acting on \vec{p}_2 and \vec{p}_1 ?
- e. What is the force on \vec{p}_2 if \vec{p}_2 were parallel to \vec{p}_1 and $\tilde{\vec{r}}$?

 And what is the force on \vec{p}_2 if \vec{p}_2 were parallel to \vec{p}_1 but perpendicular to $\tilde{\vec{r}}$?

*For the solutions go see the videos