

# Workbook



### **Physics 2 Electricity and Magnetism**

## **Table of Contents**

| Gauss's Law |  |
|-------------|--|
|             |  |
| Gauss's Law |  |

## **Gauss's Law**

#### Gauss's Law

## **Questions**

- 1) Find the electric field due to an infinite wire of charge density  $\lambda$ .
- 2) Find the electric field of a uniformly charged spherical shell of radius R and total charge Q.



- 3) Find the electric field of an infinite cylinder.
- a. Assume that it has uniform charge density  $\sigma$  (cylindrical shell).
- b. Assume that it has uniform charge density  $\rho$  (solid cylinder).



4) Calculate the electric field due to an infinite plane of uniform charge density  $\sigma.$ 



**5)** Find the electric field of a non-uniformly charged sphereof radius R and charge density  $\rho(r) = \rho_0 \frac{r}{R}$ .



6) An infinite plane, of width d, has charge density  $\rho(z) = Az$  which is dependent on the distance away from the centre of the plane.

A is a constant. What is the electric field?



- 7) An infinite plane, of width 2d, is charged with charge density  $\rho(z) = 7Az^6$ , where A is a constant. The z axis is perpendicular to the plane and at its centre.
- a. What is the electric field?
- b. Show that Gauss' law in differential form is applied here.
- c. Find the curl,  $\vec{\nabla} \times \vec{E}$  of the electric field and explain the result.



8) An infinite plane, of width d, has charge density  $\rho(z) = Az$  which is dependent on the distance away from the centre of the plane. A is a constant. What is the electric field?



