

Workbook

Table of Contents

The Argument Principle	2
The Argument Principle	2
The Argument Principle - Geometric Meaning	4
Rouche's Theorem	6
Hurwitz s Theorem	8
Existence of Logarithms and Roots of Functions	9

The Argument Principle

The Argument Principle

Questions

- 1) Compute $\int_{|z|=2} \frac{2z}{z^2+1} dz$ using the Argument Principle. Reminder: $\oint_{z} \frac{f'(z)}{f(z)} dz = 2\pi i (N-P)$.
- 2) Let $f(z) = \frac{(z+3)(z+1)}{z^2}$. Compute $\int_{|z|=2} \frac{f'(z)}{f(z)} dz$ using the Argument Principle. Reminder: $\oint_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i (N-P)$
- 3) Compute $\int_{|z|=1} \frac{3\sin 2z}{\sin^2 z 0.5} dz$ using the Argument Principle. Reminder: $\oint_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i (N - P)$

4) Let
$$f(z) = \frac{(z-2)^2}{(e^{2z}-1)^2 z^3}$$
.

- a. Find the zeros and poles of f (and their orders) in the domain |z| < 4.
- b. Compute $\frac{1}{2\pi i} \int_{|z|=4} \frac{f'(z)}{f(z)} dz$ using the Argument Principle. Reminder: $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = N - P$.

Answer Key

- **1)** 4*πi*
- **2)** –2*πi*
- **3)** 12*πi*
- 4) a. 0 is a pole order 5 and $\pm \pi i$ are poles of order 2 b. -7

The Argument Principle - Geometric Meaning

Questions

1) Let $f(z) = z^2$ and $\gamma = \left\{z = e^{i\theta} : 0 \le \theta \le 2\pi\right\} = \left\{z : |z| = 1\right\}$. Show that the equality $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi} \Delta \arg_{\gamma} f(z)$ holds,

by evaluation each side separately and comparing.

- 2) Compute $\frac{1}{2\pi} \Delta \arg_{\gamma} f(z)$, where $f(z) = z^2 z$ and $\gamma = \left\{ z = 2e^{i\theta} : 0 \le \theta \le 2\pi \right\}$.
- **3)** Let $f(z) = e^z$ and $\gamma = \left\{z = e^{i\theta} : 0 \le \theta \le 2\pi\right\} = \left\{z : |z| = 1\right\}$. Show that the equality $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi} \Delta \arg_{\gamma} f(z)$ holds, by evaluation each side separately and comparing.
- 4) Use the Argument Principle to compute N for the polynomial $p(z) = z^2 + 1$ in Im z > 0 (the upper half-plane).
- 5) Use the Argument Principle to compute the number of zeros N for the polynomial $p(z) = z^4 + 8z^3 + 3z^2 + 8z + 3$ in Re z > 0 (the right half-plane).

Answer Key

1)
$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = 2$$
, $\frac{1}{2\pi} \Delta \arg_{\gamma} f(z) = 2$
2) $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = N - P = 2 - 0 = 2$
3) $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = 0$, $\frac{1}{2\pi} \Delta \arg_{\gamma} f(z) = 0$
4) $N = 1$
5) $N = 2$

Rouche's Theorem

proprep

Questions

- **1)** Find the number of zeros of $h(z) = z^4 + 5z + 1$ in $D = \{z \in \mathbb{C} : |z| < 1\} = D(0,1)$.
- 2) Find the number of zeros of $h(z) = 5z^4 + z + 1$ in $D = \{z \in \mathbb{C} : |z| < 1\} = D(0,1)$.
- **3)** Find the number of zeros of $h(z) = z^4 + 5z + 4$ in $D = \{z \in \mathbb{C} : |z| < 2\} = D(0,2)$.
- 4) Find the number of zeros of $h(z) = z^5 + 3z + 1$ in $D = \{z \in \mathbb{C} : 1 < |z| < 2\}$.
- 5) Find the number of zeros of $h(z) = z^4 10z + 1$ in $D = \{z \in \mathbb{C} : 1 < |z| < 3\}$.
- 6) Find the number of zeros of $h(z) = \frac{1}{2}z^6 5z^4 + 7z$ in $D = \{z \in \mathbb{C} : |z| < 1\} = D(0,1)$.
- 7) Find the number of zeros of $h(z) = \frac{1}{2}z^6 5z^4 + 7z$ in $D = \{z \in \mathbb{C} : 1 < |z| < 3\}$.
- 8) Let $m \ge 2$ Find the number of zeros (including multiplicity) in $D = \{z \in \mathbb{C} : |z| < 1\} = D(0,1)$ of $h(z) = ze^{m-z} - 1$.
- 9) Let $D = \{z \in \mathbb{C} : |z| < 1\} = D(0,1)$ and let $a_1, \dots, a_n \in D$ be all different.

Denote
$$B(z) = \prod_{j=1}^{n} \frac{z-a_j}{1-z\overline{a_j}} = \frac{z-a_1}{1-z\overline{a_1}} \cdot \dots \cdot \frac{z-a_n}{1-z\overline{a_n}}$$
 and let $z_0 \in D$.

Prove that the function $B(z) - z_0$ has *n* roots in *D* (including multiplicities).

Hint: show that $\varphi_j(z) = \frac{z - a_j}{1 - z \overline{a_j}}$ maps the unit circle into itself.

- **10)** Prove that there exists a number $N \in \mathbb{N}$ such that, for all n > N $(n \in \mathbb{N})$, there is exactly one solution of the equation $\sin z = z^n$ in the disk $D = D(0, \frac{1}{2})$.
- **11)** Let f be analytic on the closed unit disk $\overline{D}(0,1)$ and satisfy |f(z)| < 1 for all |z| = 1. Prove that f has exactly one stationary point in the open unit disk. In other words, prove that the equation f(z) = z has exactly one solution in D(0,1).

Answer Key

- **1)** 1
- **2)** 4
- **3)** 4
- **4)** 4
- **5)** 3
- **6)** 1
- **7)** 3
- **8)** 1
- 9) Proof
- 10) Proof
- 11) Proof

Hurwitz s Theorem

Questions

12) Prove that there exists $N \in \mathbb{N}$ such that, for all n > N, the equation

$$z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + (-1)^{n+1} \frac{z^{2n+1}}{(2n+1)!} = 0 \text{ has exactly one solution in } D = \left\{ z : \left| z - \pi \right| < 1 \right\}.$$

Hint: Use Hurwitz's theorem and the Taylor series for $\sin z$.

13) Let R > 0. Prove that there exists $N \in \mathbb{N}$ such that, for all n > N, the equation $1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} = 0$ has no solutions in $D = D(0, R) = \{z : |z| < R\}$.

Hint: Use Hurwitz's theorem and the Taylor series for e^z .

*Proof questions- for the full solution see the video

Existence of Logarithms and Roots of Functions

Questions

- **1)** Show that the function $f(z) = \frac{z-1}{z+1}$ has an analytic logarithm in $D = \mathbb{C} \{(-\infty, -1] \cup [1, \infty)\}$.
- **2)** Let *D* be the domain $\mathbb{C} [-i, i]$, as illustrated.
 - a. Prove that the function $f(z) = \frac{z-i}{z+i}$ has an analytic logarithm on D.
 - b. Prove that the function $F(z) = z^2 \frac{z-i}{z+i}$ has an analytic square root on D.
- **3)** Let *D* be the domain $\mathbb{C}-[-1,1]$, and let $f(z)=1-z^2$ on *D*.
 - a. Prove that f(z) does **not** have an analytic logarithm on D.
 - b. Prove that f(z) **does** have an analytic square root on D.
- 4) Let *D* be the domain $\{z: |z| > 4\}$, and let $f(z) = (z-2)^2 4$ on *D*.
 - a. Prove that f(z) does **not** have an analytic logarithm on D.
 - b. Prove that f(z) **does** have an analytic square root on D.

*Proof questions- for the full solution see the video

